
COP 3330:  Java I/O             Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

Java I/O

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007



COP 3330:  Java I/O             Page 2 © Mark Llewellyn

Reading and Writing in Java
• The vast majority of computer programs require 

information to be entered into them, and programs usually 
provide some form of output information.

• Early in this course you created output using the simple 
print() and println() methods of the 
java.lang.System class and more recently you’ve 
graduated to using the JOptionPane class methods to 
display information to the user in a GUI.

• Many programs rely on input information being contained 
in a data file that the program must read and process.  In 
turn, the program writes information to an output file.



COP 3330:  Java I/O             Page 3 © Mark Llewellyn

Reading and Writing in Java (cont.)

• Java provides many classes to perform the 
program input and output.

• Program I/O refers to any I/O performed by the 
program.

• File I/O refers specifically to I/O performed on 
files.

• Program I/O can come from or be sent to the 
monitor screen, data files, network sockets, or the 
keyboard.



COP 3330:  Java I/O             Page 4 © Mark Llewellyn

Reading and Writing in Java (cont.)

• Java designers constructed program I/O to be 
based on three principles:

1. The input and output is based on streams that have a 
physical device at one end, such as a disk file, and 
data streams into or out of the program in a flow of 
characters or bytes.  Classes are used to manage how 
the data comes into or leaves a program.

2. I/O should be portable and should obtain consistent 
results even though the platforms may differ.

3. Java provides many classes that each perform a few 
tasks instead of large classes that do many things.



COP 3330:  Java I/O             Page 5 © Mark Llewellyn

Streams
• A way to visualize data flowing into or out of a Java 

program is to envision a stream of characters or a data 
pipeline.

• This stream of data is linked to a physical device, such as a 
file stored on the hard drive to a network socket.

Java program apples, eggs,
gummi bears,
peppers, milk,

tea, pears

File 
shoppinglist.txt 
on disk.

apples, eggs

stream of 
characters



COP 3330:  Java I/O             Page 6 © Mark Llewellyn

Streams (cont.)

• There are two types of streams in Java, byte 
streams and character streams.

• Byte streams pump the data into and out of 
programs as bytes.  Byte stream classes are used 
for handling these bytes.  Binary data are stored 
either as 8-bit bytes or as an ASCII character code 
set.

• Character streams are used for handling character 
data.  Character streams use Unicode, which is 
composed of two-byte characters and can be used 
on an international basis.



COP 3330:  Java I/O             Page 7 © Mark Llewellyn

I/O with Byte Stream Classes
• Byte stream classes in Java use a two-class hierarchical 

structure, one for reading and one for writing.  

• The top two classes are InputStream and 
OutputStream.

• Each of these superclasses has many subclasses designed 
for working with different devices such as files and 
network connections.

• Important methods include read(), and write().

• For reading and writing data files, use the 
FileInputStream and FileOutputStream class 
objects.  The simplest form of these classes reads and 
writes data one byte at a time.



COP 3330:  Java I/O             Page 8 © Mark Llewellyn

I/O with Byte Stream Classes (cont.)

• FileInputStream reads data, one byte at a 
time, and treats the data as integers.

• If the FileInputStream object tries to read 
beyond the last character in the file, the read 
method returns a negative one (-1).



COP 3330:  Java I/O             Page 9 © Mark Llewellyn

Byte Stream Methods
• The FileInputStream class has several read()

methods as well as other supporting methods.  Some 
of these methods are listed below.

int available(): Returns the number of bytes available that 
can be read in this file.

int read(): Reads one byte at a time and returns each byte 
as an integer.

void read( byte[] b): Reads up to b.length bytes of data 
from the input stream.

void read (byte[] b, int offset, int length): Reads length 
number of bytes from the input stream beginning at the 
offset of the data.

void close(): Closes the file and releases resources that 
are associated with the input stream.



COP 3330:  Java I/O             Page 10 © Mark Llewellyn

Byte Stream Methods (cont.)

• The FileOutputStream class has several 
write() methods as well as other supporting 
methods.  Some of these methods are listed below.

void write(int b): Writes the byte to the output stream.  
The input is a single integer and is converted to a 
byte.

void write(byte[] b): Writes up to b.length bytes of data 
into the output file stream.

void write (byte[] b, int from, int length): Writes a 
portion of the byte array to the output file stream.  
The from variable indicates the starting index, and the 
length is the number of bytes.

void close(): Closes the file and releases any resources 
that are associated with the output stream.                 



COP 3330:  Java I/O             Page 11 © Mark Llewellyn

Technique 1: Reading a File – 1 byte at a Time

• The first example program in this section of notes 
demonstrates how to read a text data file one byte at a 
time, and print each byte read as a character.

• The text file will be called: shoppinglist.txt
and contains the following:

apples, eggs, gummi bears

peppers, milk, coke

tea, pears, chicken

shrimp, onions, frosted flakes

shoppinglist.txt



COP 3330:  Java I/O             Page 12 © Mark Llewellyn

ReadFile1.java
//File:  ReadFile1.java
// This program reads a file using FileInputStream object. 
// It reads the file a byte at a time and prints the char
// to the screen.
import java.io.FileInputStream;
import java.io.IOException;
import java.io.FileNotFoundException;
public class ReadFile1 
{

public static void main( String[] args)  
{

ReadFile1 app = new ReadFile1();
System.exit(0);

}
public ReadFile1()
{

//We create a FileInputStream object and pass the name of the 
//data file into the constructor. If Java can't find the file,
//it throws a FileNotFoundException.
try
{



COP 3330:  Java I/O             Page 13 © Mark Llewellyn

FileInputStream fileIn = new FileInputStream
(“shoppinglist.txt");

//Ask the file object how many bytes are in the file.
int size = fileIn.available();
int oneChar;
for(int i = 0; i < size; ++i){

//Read the file one byte at a time. 
//If a read error then throw an IOException.
oneChar = fileIn.read();

//print without linefeeds
System.out.print((char)oneChar);

}
fileIn.close();

}
catch(FileNotFoundException fnfe){

System.out.println("Can't find the file!");
}
catch(IOException ioe){

System.out.println("Problem reading the file!");
}

}
}



COP 3330:  Java I/O             Page 14 © Mark Llewellyn

Output from ReadFile1.java

This execution specified the 
file named “grocerylist.txt”, 
which does not exist.

This execution specified the 
correct file which was 
successfully opened and printed.



COP 3330:  Java I/O             Page 15 © Mark Llewellyn

Explanation of ReadFile1.java
• Once the FileInputStream object is created, the 

object is queried to determine its size.  The 
available() method returns the number of bytes 
that can be read from this file.

• In the for loop, one byte at a time is read and printed 
to the command prompt window.  

– Notice that print() was used which does not add a new 
line character.  The new line characters are already in the 
data file.  When the “\n” characters are read and output via 
the print() method, we’ll see the linefeed in the output.



COP 3330:  Java I/O             Page 16 © Mark Llewellyn

Explanation of ReadFile1.java (cont.)

• There is a second manner in which this code could be 
written which involves checking each integer as it is 
read in, to see if it is a negative one (-1).  

• Using this technique, you do not use the 
available() method to determine the number of 
bytes in the file, but rather just read until the last byte 
is read.

• This modification is shown in the next version of the 
ReadFile1.java program.  Try this modification 
yourself to see that it produces exactly the same 
results.



COP 3330:  Java I/O             Page 17 © Mark Llewellyn

Slightly Modified ReadFile1.java
//File:  ReadFile1.java
// This program reads a file using FileInputStream object. 
// It reads the file a byte at a time and prints the char
// to the screen.
import java.io.FileInputStream;
import java.io.IOException;
import java.io.FileNotFoundException;
public class ReadFile1 
{

public static void main( String[] args)  
{

ReadFile1 app = new ReadFile1();
System.exit(0);

}
public ReadFile1()
{

//We create a FileInputStream object and pass the name of the 
//data file into the constructor. If Java can't find the file,
//it throws a FileNotFoundException.
try
{



COP 3330:  Java I/O             Page 18 © Mark Llewellyn

FileInputStream fileIn = new FileInputStream
(“shoppinglist.txt");

//Ask the file object how many bytes are in the file.
int size = fileIn.available();
int oneChar;
//modified way of reading the file – 1 int at a time
while( ( oneChar = fileIn.read() )  != -1)
{

//print without linefeeds
System.out.print((char)oneChar);

}
fileIn.close();

}
catch(FileNotFoundException fnfe){

System.out.println("Can't find the file!");
}
catch(IOException ioe){

System.out.println("Problem reading the file!");
}

}
}



COP 3330:  Java I/O             Page 19 © Mark Llewellyn

Technique 2: Reading a File into a byte Array

• For our second example using byte streams, we’ll read 
an entire file into a byte array using a single read 
statement.  

• Just to do something to the data that is read, we’ll 
reverse the characters in this array and write the 
reversed array to an output file.  

– The name of the input file will again be 
“shoppinglist.txt” and the reversed file that will be 
created by the executing program will be named 
“tsilgnippohs.txt” .



COP 3330:  Java I/O             Page 20 © Mark Llewellyn

ReadFile2.java
//File:  ReadFile2.java
// This program reads a file using FileInputStream object. 
// It reads the entire file into a byte array in one read statement.
// We then reverse the elements and write it to an output file. 
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.FileNotFoundException;
public class ReadFile2 
{

public static void main( String[] args)  
{

ReadFile2 app = new ReadFile2();
System.exit(0);

}
public ReadFile2()
{

//We create FileInputStream and FileOutputStream objects, 
//passing the filename to each constructor. 
try
{



COP 3330:  Java I/O             Page 21 © Mark Llewellyn

FileInputStream fileIn = new FileInputStream
(“shoppinglist.txt");

FileOutputStream fileOut = new FileOutputStream
( “tsilgnippohs.txt");

//Ask the file object how many bytes are in the file.
int size = fileIn.available();
byte array[] = new byte[size];
byte reversedArray[] = new byte[size];
fileIn.read( array);
fileIn.close();  //done reading, close the file
//print the original array
System.out.println("\n The original array is: \n");
System.out.print( new String( array));
for(int i = 0; i < size; ++i){

reversedArray[i] = array[size - i - 1]; 
}
//print the reversed array
System.out.println("\n\n The reversed array is: \n ");
System.out.print( new String( reversedArray));
fileOut.write( reversedArray ); 

}
catch(FileNotFoundException fnfe){

System.out.println("Can't find the file!");
}
catch(IOException ioe){

System.out.println("Problem reading the file!");
}  }  }



COP 3330:  Java I/O             Page 22 © Mark Llewellyn

Output from ReadFile2.java

This execution specified the 
output file as “tsilgnippohs.txt”
which holds the reversed 
contents and will appear in the 
default directory as a .txt file.

This execution specified the 
file named “shoppinglist.txt”, 
which was read into an array 
and the array contents are 
printed on the screen.



COP 3330:  Java I/O             Page 23 © Mark Llewellyn

Buffered Character Stream File I/O

• Reading and writing program data using byte stream classes is 
straightforward, but it presents problems for the Java 
programmer. 

• The data comes into the program as bytes (integers) or in byte 
arrays. (integer arrays).  If the programmer needs to work with 
each data item in the byte array, they would need to find a way 
to separate the individual data items.

– For example, if we needed to list the items in our shopping list, we 
would need to go through the byte array, pulling out the letters, and 
starting a new item when we encountered a comma or a new line.

– If you’re thinking that there must be a better way to do this, you’re 
right!



COP 3330:  Java I/O             Page 24 © Mark Llewellyn

Buffered Character Stream File I/O (cont.)

• Wrapper Classes

– Java provides many wrapper classes.  A wrapper class is a programming 
term that is part of the Java jargon.  If you look for Java classes with 
“Wrapper” in the name, you will not find any.  

– Wrapper classes wrap one class in another class, thus improving the 
features of the first class.  

– You’ve already used the Integer, Double, and Float wrapper 
classes.  Each of these classes wraps a primitive single data type value 
into a class and provides useful methods for the programmer who is 
working with the primitive values.

– We have used the BufferedReader wrapper class extensively in 
sample code.  This wrapper class provides a readLine() methods to 
read data one line at at time.



COP 3330:  Java I/O             Page 25 © Mark Llewellyn

Buffered Character Stream File I/O (cont.)

• For I/O, Java provide stream buffering classes that provide 
the programmer with a means to attach a memory buffer to the 
I/O streams.  

• Having a memory buffer attached to the I/O stream allows the 
programmer to work on more than one byte or character at a 
time.

• There are buffered classes for both byte streams and character 
stream use.  

• We’ve already wrapped file readers in buffered readers and 
we’ll see how to do the same with file writers wrapped into a 
buffered writer class.



COP 3330:  Java I/O             Page 26 © Mark Llewellyn

Buffered Character Stream File I/O (cont.)

• Java’s FileReader class allows you to read a data 
file as characters instead of bytes.  

• We’ve wrapped the FileReader in a 
BufferedReader class, which provides a 
readLine() method and the ability to read a data 
file one line at a time.

BufferedReader br = new BufferedReader( new FileReader(FILE_NAME));



COP 3330:  Java I/O             Page 27 © Mark Llewellyn

BufferedReader Methods
void close(): Closes the file and releases any resources 

associated with the output stream.

void mark(int readAheadLimit): Marks the present position in the 
stream.

boolean markSupported(): Returns true if this stream supports the 
mark() operation.  The BufferedReader class supports this 
operation.

int read(): Reads a single character.

int read(char[] buf, int offset, int length): Reads characters 
into a portion of an array.

String readLine(): Reads a line of text.

boolean ready(): Returns true if this stream is ready to be read.

void reset(): Resets the stream to the most recent mark.

long skip(long n): Skips n characters in the stream. Returns the 
number of characters actually skipped.



COP 3330:  Java I/O             Page 28 © Mark Llewellyn

Buffered Reader Example: readStates.java
• Although we’ve used the BufferedReader class in many 

examples in class up to this point, I’ve included a couple more 
examples here for the sake of completeness and consistency.

• In the first program, to make it a little bit different from some 
of the others, I’ve used vectors and made the program a GUI.  
The second one is also a GUI but reads multiple file lines per 
activation.

• When programming with data files in any language, it is 
important that the programmer know how the data file is 
designed.  The programmer must write the corresponding read 
statements to match the file design in order to read the file 
accurately.

– In this case the file consists of one state name per line in the file.



COP 3330:  Java I/O             Page 29 © Mark Llewellyn

readStates.java
//readStates.java
//Use a BufferedReader and FileReader to read a data file one line at a 

time.
import java.util.Vector;
import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;
import javax.swing.JFrame;
import javax.swing.JComboBox;

public class readStates extends JFrame
{

//Create a Vector object, which is a dynamic array that hold objects.
private static Vector stateList = new Vector();

public readStates(){
super( "State List");

}

private void readStateList() throws IOException
{



COP 3330:  Java I/O             Page 30 © Mark Llewellyn

// Convenience class for reading character files.
FileReader fr = new FileReader( "StateList.txt");
//Read text from a character-input stream, buffering characters so as
//to provide for the efficient reading of characters, arrays, and
//lines.
BufferedReader br = new BufferedReader( fr );
// Holds the entire line read by BufferedReaders
String line;
//The ready() method returns true as long as there are lines to read.
while( br.ready()) 
{

//Use the buffered reader to read the string till \n
line =  br.readLine();

System.out.println(line); //print line to the command window
stateList.add( line); //add each line to the array

}
// close the Buffered Reader
br.close();

}
public static void main( String[] args) {

readStates app = new readStates();
try{

app.readStateList();
}



COP 3330:  Java I/O             Page 31 © Mark Llewellyn

catch( IOException ioe){
ioe.printStackTrace();
System.exit( 1);

}

//add a listener
app.addWindowListener( new WindowAdapter()
{ 

public void windowClosing( WindowEvent e)
{

System.exit( 0);
}

});
app.setSize( 200,75);

//Get the frame's content pane and add the combo box to it.
app.getContentPane().add( new JComboBox( stateList));
app.show();

}
}



COP 3330:  Java I/O             Page 32 © Mark Llewellyn

Output from readStates.java

This part of the execution 
prints the contents of the file 
to the command prompt 
window.

This is the GUI before clicking 
on the state button.  The drop-
down menu is not shown.

The drop-down menu appears 
when the GUI button is clicked 

given the user the option of 
selecting another state.



COP 3330:  Java I/O             Page 33 © Mark Llewellyn

Buffered Reader Example 2: readWeather.java

• The BufferedReader readLine() method is handy anytime 
the data file is organized with data on individual lines.  

• In this next example, the data file represents weather data as a
mixture of textual and numeric information, yet the 
readLine() method is used for all the lines.  The file is 
organized in the following manner:

Date
Reporting Station
High Temperature in Fahrenheit degrees
Low Temperature in Fahrenheit degrees
Relative Humidity at 12 noon stated as a percentage 0.xx
Rainfall total in inches for past 24 hours



COP 3330:  Java I/O             Page 34 © Mark Llewellyn

readWeather.java
//readWeather.java
//We read the data on six lines using a separate read statement 
//for each piece of data.
import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.FileNotFoundException;
import javax.swing.JOptionPane;

public class readWeather {
public static void main( String[] args) throws IOException
{ final String FILENAME = "WeatherSummary.txt";

int exitCode = 0;  
try{

BufferedReader br = new BufferedReader(new FileReader(FILENAME));
//The line holds the line read by BufferedReaders

String line, output;
String reportingStation, date;
double highTemp, lowTemp, humidity, rainfall;

//We have to make 6 separate read statements to gather the data
//from the file.
//The readLine throws IOException if there's a problem.



COP 3330:  Java I/O             Page 35 © Mark Llewellyn

// first line is the date
date =  br.readLine();
// second line is the station
reportingStation = br.readLine();
// third line is the high temp
line = br.readLine();
highTemp = Double.parseDouble(line);
//fourth line is the low temp
//combine into one line
lowTemp = Double.parseDouble( br.readLine() );
// fifth line is the humidity
humidity = Double.parseDouble( br.readLine() );
humidity *= 100.0;
//last line is the rainfall
rainfall = Double.parseDouble( br.readLine() );
output = "Date: " + date + "\nStation: " + reportingStation +

"\nTemp Range: " + highTemp + " to " + lowTemp +
"\nHumidity at noon: " + humidity + "% \n(Rainfall = 
“+ rainfall + " \")";

JOptionPane.showMessageDialog(null, output, FILENAME, 1);
br.close();

}
catch(FileNotFoundException fnfe) {

JOptionPane.showMessageDialog(null, "Can't find the file!", 
FILENAME, 2);

exitCode = 1;  //had a problem
}



COP 3330:  Java I/O             Page 36 © Mark Llewellyn

catch(IOException ioe) {
JOptionPane.showMessageDialog(null, "Trouble!", 
FILENAME, 2);
exitCode = 1;

}
System.exit( exitCode);

}
}

Output from readWeather.java



COP 3330:  Java I/O             Page 37 © Mark Llewellyn

String Tokenizers
• If the data file is organized so that there is one data item on 

each line, the job of reading the data from the file is 
simple.  The BufferedReader’s readLine() method 
returns each line as a String and it can be converted to a 
numeric value if necessary.

• What happens when there is more that one data item per 
line in the file?  Maybe there is a series of text items or 
numbers that are separated by commas in the file.  There 
may also be characters in the file that you do not want to 
process in the program.  How do you handle these 
situations?

• Java has a helper class, called StringTokenizer, 
which helps to separate individual parts of the String
read in by the readLine() method.



COP 3330:  Java I/O             Page 38 © Mark Llewellyn

String Tokenizers (cont.)

• The StringTokenizer class is most helpful when the 
program reads textual data from a file.

• The lines read from the data file are read as Strings.  The 
StringTokenizer can be used on any String, such 
as the input from 
JOptionPane.showInputDialog(), a String
that you initialize in a program, or a String that is filled 
by a readLine() method.

• The StringTokenizer class has limited capabilities 
involving what can be pulled out of the String.  A good 
rule of thumb is that if a single character separates data 
items in the line, such as a comma, or a space, the 
StringTokenizer class is the one to use.



COP 3330:  Java I/O             Page 39 © Mark Llewellyn

String Tokenizers (cont.)

• For more precise or complicated pattern matching, you 
would need to use the Pattern and Matcher classes 
from Java’s java.util.regex package.

• Recall the example ReadFile1.java from page 12 in this set 
of notes.  This program read a “shoppinglist.txt” of 3 items 
per line which were separated by commas and spaces in 
the lines of the data file (see page 11).  In ReadFile1.java 
we read this file one byte at a time and simply echoed it to 
the output.  

• In the next example, we will read the same file but there 
will be only commas in this file, no spaces between the 
data items.  If we want to handle each of the items in the 
list separately, we need to pull each item off the line when 
the program reads the line from the file.



COP 3330:  Java I/O             Page 40 © Mark Llewellyn

String Tokenizers (cont.)

• As the first line of the file is read into a String variable, we
must pull out “apples”, “eggs”, and “gummi bears” and 
place them in separate variables.  This is the job of the 
StringTokenizer.

• The StringTokenizer is passed then String we want it to 
work on, and we must tell it what delimits each data item.  
In this case we need to tell it that the delimiter in the file is 
a comma.

• We’ll ask the tokenizer object how many tokens it finds in 
our line and then we’ll loop through the object, extracting 
the strings that are delimited by the commas.

• The program readFileToken.java illustrates this 
process.



COP 3330:  Java I/O             Page 41 © Mark Llewellyn

readFileToken.java
//File: readFileToken.java    uses data file shoppinglist.txt
//Use a StringTokenizer to separate data items 
//from a String read by the BufferedReader.

import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import javax.swing.JOptionPane;

public class readFileToken {
public static void main( String[] args) throws IOException {

final String FILENAME = "shopplinglist.txt";
int exitCode = 0;
try {

//FileNotFoundException thrown if we can't find the file.
BufferedReader br = new BufferedReader(new FileReader(FILENAME));

//The line holds the line read by BufferedReader
String line;
// The string tokenizer class allows an application 
// to break a string into tokens.
StringTokenizer token;



COP 3330:  Java I/O             Page 42 © Mark Llewellyn

//both ready and read might throw IOException
while( br.ready() ) {

String storeItem;
// use the buffered reader to read the string till \n
line =  br.readLine();
// construct with "," as the element delimeter
token = new StringTokenizer( line, ",");
int howManyTokens = token.countTokens();
System.out.println("\nThe line: " + line + " has " + 

howManyTokens + " tokens");
for(int i = 0; i < howManyTokens; ++i){

storeItem = token.nextToken();
System.out.println(storeItem);

}}
// close the Buffered Reader

br.close();
}
catch(FileNotFoundException fnfe) {

JOptionPane.showMessageDialog(null, "Can't find the file!", 
FILENAME, 2);

exitCode = 1;  //had a problem
}
catch(IOException ioe){

JOptionPane.showMessageDialog(null, "Trouble!", FILENAME, 2);
exitCode = 1;

}
System.exit( exitCode);

}  }

The 
StringTokenizer 
is operating on 
String variable 
line and the 
delimiter is 
specified as a ,.



COP 3330:  Java I/O             Page 43 © Mark Llewellyn

Output from readFileToken.java

This execution specified the 
file named “shopplinglist.txt”, 
which was not a valid file.  
This generated an error 
message through the 
exception handler.

This execution 
specified a correct 
input file.  You can 
see the output from 
the StringTokenizer 



COP 3330:  Java I/O             Page 44 © Mark Llewellyn

String Tokenizers (cont.)

• In this next example of using the StringTokenizer
class, everything is basically the same as it was for the 
readFileToken.java program with the exception 
that now, there are a varying number of items per line in 
the data file.  In addition, we’ll add some characters to the 
file that we want the tokenizer to strip out for us.

hammer, nails, #10 x 1-1/4” wood screws
10d nails, hack saw blades, teflon tape, ruler
pneumatic finishing nailer, pliers
#6 x 1” allen head bolt
PVC cement, PVC primer, scroll saw
7/16” open end wrench, ½” impact socket

file: toollist.txt



COP 3330:  Java I/O             Page 45 © Mark Llewellyn

String Tokenizers (cont.)

• These tasks pose no problem for the 
StringTokenizer.  For example, if we are not sure 
how many tokens appear on a given line of the data file, 
we’ll simply run a loop extracting values and use the 
hasMoreTokens() method, which returns true if there 
are more tokens in the tokenizer object.

• The format of the file we will use will contain a space after 
each comma.  We want to strip out this leading space so 
that the data items are correctly represented.  Thus, when 
we extract “ruler” from the third line, the tokenizer 
extracts “ ruler” because it extracts the data between 
the commas, including the leading space.



COP 3330:  Java I/O             Page 46 © Mark Llewellyn

String Tokenizers (cont.)

• Use the String class’s trim() method that 
returns a copy of the String with leading and 
trailing whitespace characters omitted.  

• Once this is done the strings are stored in a Vector 
object named partsList.  [Recall that a vector 
is a dynamic array (see java.util.Vector
for more).]



COP 3330:  Java I/O             Page 47 © Mark Llewellyn

readTools.java
//File: readTools.java    uses data file toollist.txt
//Use a StringTokenizer to separate comma delimited data items with leading
//spaces from a String read by the BufferedReader.
//Add them into a Vector to be sorted into alphabetical order.

import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import javax.swing.JOptionPane;
import java.util.Vector;
import java.util.Collections;

public class readTools {
public static void main( String[] args) throws IOException {

final String FILENAME = "PartsList1.txt";
int exitCode = 0;
Vector partsList = new Vector();
try {

//FileNotFoundException thrown if we can't find the file.
BufferedReader bufReader = new BufferedReader(new FileReader(

FILENAME));



COP 3330:  Java I/O             Page 48 © Mark Llewellyn

//The line holds the line read by BufferedReader
String line;
// The string tokenizer helps us separate the data items.
StringTokenizer sepToken;

//both ready() and read() might throw IOException
while( bufReader.ready() ) {

String part;
// use the buffered reader to read the string till \n
line =  bufReader.readLine();
// construct with "," as the element delimeter
sepToken = new StringTokenizer( line, ",");
while( sepToken.hasMoreElements () ){

part = sepToken.nextToken();
//Trim off the leading and trailing 
//whitespace characters.
part = part.trim();
//add the part to the partsList array
partsList.add(part);

}
}
//The Collections class works on vector objects.
//The static sort method sorts the elements found in the 
//vector object.
Collections.sort(partsList);
String output = "";

Collections
method 
sort() 

allows us 
to sort the 
contents of 
the Vector.



COP 3330:  Java I/O             Page 49 © Mark Llewellyn

for(int i = 0; i < partsList.size(); ++i)
{

//We get each element from the list and tack on a \n
output += partsList.get(i) + "\n";

}
// close the Buffered Reader

bufReader.close();

JOptionPane.showMessageDialog(null,output, FILENAME,1);

}
catch(FileNotFoundException fnfe) {

JOptionPane.showMessageDialog(null, "Can't find the file!", 
FILENAME, 2);

exitCode = 1;  //had a problem
}
catch(IOException ioe) {

JOptionPane.showMessageDialog(null, "Trouble!", FILENAME, 2);
exitCode = 1;

}

System.exit( exitCode);
}

}



COP 3330:  Java I/O             Page 50 © Mark Llewellyn

Output from readTools.java

Notice that the invocation of 
the Collections method sort() 
has produced a sorted list of 
tools.



COP 3330:  Java I/O             Page 51 © Mark Llewellyn

File Output with the BufferedWriter Class

• The BufferedWriter class works in a similar 
manner to the BufferedReader class.

• A FileWriter object is wrapped in a 
BufferedWriter class which makes it possible to 
write Strings to an output file.

• The BufferedWriter constructors require a 
FileWriter object.  The FileWriter object is created 
and then used in the constructor for the 
BufferedWriter.



COP 3330:  Java I/O             Page 52 © Mark Llewellyn

File Output with the BufferedWriter Class (cont.)

• As we’ve seen before, this can be broken up into 
two separate steps:

//The BufferedWriter wraps the FileWriter object
//This allows us to write a data file one line at a time
FileWriter writer = new FileWriter();
BufferedWriter bufWriter = new BufferedWriter( writer);

• As before, the more common and preferred 
technique is to combine this into one line:
BufferedWriter bufWriter = new BufferedWriter (new FileWriter());



COP 3330:  Java I/O             Page 53 © Mark Llewellyn

BufferedWriter Methods
void close(): Closes the file and releases any resources 

associated with the output stream.

void flush(): Flushes any characters out of the output 
stream.

void newLine(): Writes a line separator into the output 
stream.

void write(char[] buf, int offset, int length): Writes a 
portion of a character array, beginning at the offset 
and writing length number of characters.

void write(char c): Writes a single character.

void write(String s, int offset, int length): Writes a 
portion of the String, beginning at the offset 
character.  Writes length number of characters.



COP 3330:  Java I/O             Page 54 © Mark Llewellyn

File Output with the BufferedWriter Class (cont.)
• In the next example program, we’ll read the names of 

bicycles from the file bikes.txt and write all of the 
bikes in which are named Colnago into a output file named 
colnagos.txt.

• The input file (shown on page 60) contains one bike name 
per line.

• In the program we create BufferedReader and 
BufferedWriter objects and then read each line, 
searching it with the String class’s indexOf()
method.  The indexOf() method returns the location of 
the substring in the String and a –1 if it cannot find the 
substring.  If we locate a Colnago bike, we’ll write its 
entire name to the output file using the 
BufferedWriter class’s write() method that 
accepts strings as input.



COP 3330:  Java I/O             Page 55 © Mark Llewellyn

File Output with the BufferedWriter Class (cont.)

• The write() method we’re using writes a 
portion of the String and requires the beginning 
position and the number of characters to be 
written.  

– Since we want to write the entire string, we’ll use an 
offset of 0 and bikeLine.length() for the number of 
characters to be written.



COP 3330:  Java I/O             Page 56 © Mark Llewellyn

FindColnagos.java
//File: FindColnagos.java    uses data file bikes.txt
//We search through the list of bikes that we read
//from the bikes.txt file looking for Colnagos.
//Write all the Colnagos to colnagos.txt file.
import java.io.FileReader;
import java.io.FileWriter;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.FileNotFoundException;
import javax.swing.JOptionPane;

public class FindColnagos {
public static void main( String[] args) {

final String FILENAME = "bikes.txt";
final String FILEOUT = "colnagos.txt";
int exitCode = 0;
try {

//FileNotFoundException thrown if we can't find the file.
BufferedReader bufReader = new BufferedReader( new FileReader(

FILENAME) );
//Create a BufferedWriter object to write our Strings

BufferedWriter bufWriter = new BufferedWriter( new 
FileWriter( FILEOUT) );



COP 3330:  Java I/O             Page 57 © Mark Llewellyn

//The line holds the line read by BufferedReader
String bikeLine;
int colnagoPosition;  

//both ready and read might throw IOException
while( bufReader.ready() ) {

// use the buffered reader to read the string till \n
bikeLine =  bufReader.readLine();
colnagoPosition = -1;
//The indexOf() needs exact String, returns the position if 
//it finds it
colnagoPosition = bikeLine.indexOf("Colnago");
if(colnagoPosition >= 0) //we have a Colnago bike

{
//inputs to write(String,startWritingAt,howManyChars)
bufWriter.write(bikeLine, 0, bikeLine.length() );
//write a newline into the file
bufWriter.newLine();

}
}//end while

// close the Buffered Reader and Writer
bufReader.close();
bufWriter.close();

}

uses the last 
form shown on 

page 54



COP 3330:  Java I/O             Page 58 © Mark Llewellyn

catch(FileNotFoundException fnfe) {
JOptionPane.showMessageDialog(null, "Can't find the file!", 

FILENAME, 2);
exitCode = 1;  //had a problem

}
catch(IOException ioe) {

JOptionPane.showMessageDialog(null, "Trouble!", FILENAME, 2);
exitCode = 1;

}

System.exit( exitCode);
}

}



COP 3330:  Java I/O             Page 59 © Mark Llewellyn

Output from FindColnagos.java

Input file: “bikes.txt”

Generated output file: 
colnagos.txt



COP 3330:  Java I/O             Page 60 © Mark Llewellyn

Final Example Program
• Our final example is a program that includes the 

use of buffered readers and writers, string 
tokenizers, and exception handling.

• The purpose of this program is to read a file 
containing trip expenses and sum the various 
items and write the results to an output file.

– Input file:  tripexpenses.txt

– Generated output file: totaltripcost.txt



COP 3330:  Java I/O             Page 61 © Mark Llewellyn

Final Example Program (cont.)

• The input file tripexpenses.txt contains the 
following information.

# denotes a comment and is ignored
# This list the items and costs for a trip
# Airline tickets
$1975.00
# Rental Car
$379.99
# Gas for the rental car
$68.00
# Hotel for 3 nights
$190.18  $190.18  $179.74
# Meals for 3 days
$89.68  $189.90   $78.50
# Parking garage fees
$9.50   $9.50   $2.75
# Toll fees
$3.75   $3.75
# uncomment the next line to cause an error
# Movie tickets



COP 3330:  Java I/O             Page 62 © Mark Llewellyn

Final Example Program (cont.)

• The program reads a line at a time and any line beginning 
with a “#” is not processed.  The program will assume that 
if the line does not begin with a “#”, then it is a line that 
contains expense items written with the “$” as the 
delimiter, and the object is searched for tokens.  

– Remember that the “$” is not part of the extracted part of the line, 
and the nextToken() method pulls the data from between the 
delimiters.

• Once we’ve extracted a String containing a numeric value, 
we’ll use the parseFloat() method to convert the value to a 
float.  

• The numeric values will be summed and the total value is 
written to the output file.



COP 3330:  Java I/O             Page 63 © Mark Llewellyn

Final Example Program (cont.)

• I’ve included a bunch of JOptionPane message 
boxes after each method call to trace how the 
program is executing.

• I would encourage you to play around with this 
program.  For example, see how many different 
ways you can get it to throw and exception.



COP 3330:  Java I/O             Page 64 © Mark Llewellyn

TripExpenses.java
//File:TripExpenses.java,uses data file tripexpenses.txt creates totalcost.txt
// Reads in the expense amounts from the file, strip off the
// $ and parse the float value from the String. If the line contains 
// a # in the first character, we assume it is a comment and ignore it.
// This program has one try and many catch statements. The finally block
// reports the results of the program.
// We keep count of the successful methods and write a final report 
// in the finally block.
import java.io.*;
import java.util.StringTokenizer;
import javax.swing.JOptionPane;

public class TripExpenses  {
BufferedReader reader;
BufferedWriter writer;
static int exitCode;
static final String FILENAME = "tripexpenses.txt";
static final String FILEOUT = "triptotalcost.txt";

public static void main(String[] args) {
TripExpenses app = new TripExpenses();
int successfulMethods = 0;  //if we get 5, all is well



COP 3330:  Java I/O             Page 65 © Mark Llewellyn

try {
// open the file for reading
app.openFileToRead();
successfulMethods++;
JOptionPane.showMessageDialog(null, 

"Input File opened successfully.\nAttempting to read data.", 
FILENAME,1);

//Read the file parsing out the $ and tally the bill
//If there is a problem with the read, we catch it here.
float billAmount = app.readFile();
successfulMethods++;
JOptionPane.showMessageDialog(null, 

"Read the data successfully", FILENAME, 1);
// open file for writing
app.openFileToWrite();
successfulMethods++;
JOptionPane.showMessageDialog(null, 

"Opened the output file successfully", FILEOUT, 1);
//Write the total expense amount to the output file.
app.writeTripTotal(billAmount);
successfulMethods++;
JOptionPane.showMessageDialog(null, 

"Have written the output file successfully", FILEOUT, 1 );
// close the files
app.closeFiles();



COP 3330:  Java I/O             Page 66 © Mark Llewellyn

successfulMethods++;
JOptionPane.showMessageDialog(null, 

"Close the files successfully", FILENAME+" " +FILEOUT, 1 );
}
catch(IOException ioe){

JOptionPane.showMessageDialog(null, 
"File errors.\nExiting with error code 1.");

ioe.printStackTrace();
exitCode = 1;

}
catch(NumberFormatException nfe){

JOptionPane.showMessageDialog(null,
"The file is not in the proper format.\nExiting with error 

code 2.");
nfe.printStackTrace();
exitCode = 2;

}
// report how many methods were called
finally {

if(successfulMethods == 5)
JOptionPane.showMessageDialog(null,

"Completed all method calls successfully.");
else

JOptionPane.showMessageDialog(null,
"Completed " + successfulMethods + " 

successful method call(s).");
}



COP 3330:  Java I/O             Page 67 © Mark Llewellyn

System.exit(exitCode);
}

private void writeTripTotal(float total) throws IOException {
//Use a DecimalFormat object to format our output numbers.
//We use the package.Class name here instead of importing it.
java.text.DecimalFormat currency = new

java.text.DecimalFormat("0.00");
String howMuch = currency.format(total);
writer.write("Your total trip expenses amounted to $");
writer.write(howMuch, 0, howMuch.length());
writer.write(".");

}

private void openFileToRead() throws IOException {
reader = new BufferedReader(new FileReader(FILENAME));

}

private void openFileToWrite() throws IOException{
writer = new BufferedWriter(new FileWriter(FILEOUT));

}

private float readFile() throws NumberFormatException, IOException {
// Holds the entire line read by BufferedReaders
String line;
float amount = 0.0f;



COP 3330:  Java I/O             Page 68 © Mark Llewellyn

// The string tokenizer class allows an application 
// to break a string into tokens.
StringTokenizer token;
while(reader.ready()) {

// use the buffered reader to read the string till \n
line =  reader.readLine();
//Line example:  # Toll Fees
//Line example:  $3.75  $3.75
//We want to pull out the lines with the costs.
if( line.charAt(0) != '#'){

//The $ is the delimiter and separates our tokens.
//Our token will have XX.XX   form. 
//The parseFloat ignores the trailing spaces.
token = new StringTokenizer(line, "$");
// separate the elements
while(token.hasMoreElements() ){

amount += Float.parseFloat(token.nextToken());
}

}
}
return amount;

}
private void closeFiles() throws IOException {

reader.close();
writer.close();

}
}



COP 3330:  Java I/O             Page 69 © Mark Llewellyn

Output from TripExpenses.java

First output from 
TripExpenses.java

Second output from 
TripExpenses.java.  Notice 
how the header line is displaying 
the name of the input file in these 
first two outputs.

Third output from 
TripExpenses.java.  Notice 
that the header line has changed 
to reflect the output file name.



COP 3330:  Java I/O             Page 70 © Mark Llewellyn

Output from TripExpenses.java (cont.)
Fourth output from 

TripExpenses.java

Fifth output from 
TripExpenses.java.

Sixth output from 
TripExpenses.java.  

The file “totaltripcost.txt”
produced by the program 
TripExpenses.java as displayed in 
Notepad.


